
Journal of  Statistical Physics, Vol. 70, Nos. 3/4, 1993 

New Formulation of Restricted 
Growth Processes 

Sergei E. Esipov 1'2 and T. J. Newman 1 

Received June 2, 1991; final August 3, 1992 

We present a new formulation of a class of growth models-those which evolve 
according to an exclusion process. This formulation is based upon a transforma- 
tion of the probability distribution function which involves Grassmann 
variables. This method is very general and enables one to derive an exact 
stochastic differential equation for the model of interest. We describe this 
method using the "traffic" model as an example. 
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1. I N T R O D U C T I O N  

There has been eno rmous  interest in recent years concerning mode l s  of 
interface growth. (1) Such models  include the Eden model ,  (2) ballistic deposi-  
tion, (3~ restricted solid-on-solid (RSOS)  models,  (4) and diffusion-limited 
aggregat ion (DLA).  (5~ Mos t  theoretical  investigations have been centered 
a round  a phenomenologica l  Langevin  equat ion for the evolut ion of  the 
interface height h which is often called the K P Z  (Kardar ,  Parisi ,  and 
Zhang)  equationt6): 

Oth(x,  t ) =  VZh(x, t ) +  2(Vh(x, t ) ) 2+  ~(x, t) (1.1) 

where r is a Gauss ian-dis t r ibuted white noise. In (1 + 1) d imensions  the 
predictions from an R G  analysis of  this equat ion are in excellent ag reement  
with simulations;  i.e., there is a scaling regime in which the interface width 
obeys the scaling relat ion 

w(t)  ~ L U(t/L (1.2) 
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where L is the linear system size. For intermediate times such that t ~ L ~ 
we have w ( t ) ~  t ~ where r =  )~/z. The exponents have the values (6~ z = 3/2 
and Z = 1/2, which indicate that the interface width grows as o)(t)~ t ~/3 for 
t ,~ L L  

The case of more practical interest is (2 + 1) dimensions. Here the 
situation is less clear. The RG analysis (6~ of the KPZ equation indicates 
that the coupling constant ;t is marginal in this case, and no perturbative 
fixed point exists. (It is worth mentioning that if the system enters a strong- 
coupling regime, then the relevance of terms not present in the original 
KPZ equation is brought into question--this is one of the primary motiva- 
tions for this present work.) A mapping to a directed polymer in a random 
medium (71 indicates that the exponents retain their values found in the 
( 1 + 1 )  case, thus leading to claims of "superuniversality." However, 
simulations of various ballistic deposition models (4'8) have indicated that 
the interface width grows in (2 + 1) dimensions with fl,-~ 1/4. It is worth 
noting that in simulations in (2+  1) dimensions, the exponents are 
exceedingly difficult to obtain. In order to find r ,  one must be in a regime 
where 1 a t ~ L ~, indicating that one must use both very large systems and 
also run simulations for very long times. The situation is further com- 
plicated in (2 + 1 ) dimensions with predictions of an asymptotically smooth 
interface (8~ (based on a mapping of the single-step RSOS model to a six- 
vertex spin model), the announcement of fl ~ 0.13 (from simulations of an 
asymmetric SOS model and also from integration of the KPZ equation(9~), 
and also the discovery of parameter-dependent exponents. (~~ There is 
always a possibility that the asymptotic behavior neither follows a power 
law nor has universal characteristics. 

If we are to have a better understanding of universality classes in these 
problems, we need a more systematic way of analyzing the large number of 
models of interface growth. In this article we shall set forth such a method 
whereby an exact Langevin equation may be derived for a given growth 
model. We should stress that we shall not be making predictions of 
exponents in this article. Our purpose is to show possible directions of 
future research by presenting a general framework in which to describe 
different growth models. 

The method to be presented may be applied to any stochastic growth 
process which satisfies the following two conditions. First the underlying 
stochastic process must be Markovian, such that a master equation may be 
constructed. Second, if we consider the growth to proceed on a lattice, then 
the occupation of a given lattice site must be either zero or unity, i.e., we 
have an exclusion process. (It is then convenient to use the set of occupa- 
tion numbers to describe a given state of the system. In a case such as the 
RSOS model it is possible to use the neighboring height differences along 
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the interface as the fundamental variables if they are taken to have only 
two possible values.) We mention that some previous attempts to construct 
a stochastic theory for growth processes (~) have relaxed the second condi- 
tion by allowing multiple occupation and introducing a fast elimination 
process for multiply-occupied sites. We wish the theory to resemble as 
closely as possible the growth rules (usually based upon an exclusion 
process) used in simulations, and the effect of the above-mentioned 
alteration is unclear. 

The outline of this paper is as follows. In the next section we briefly 
describe the traffic model which we shall use throughout this paper to 
demonstrate our general method. In Section 3 we give a thorough discus- 
sion of a new formulation for restricted growth processes (exclusion pro- 
cesses). This is developed for the traffic model for ease of presentation. In 
Section 4 we present a solution to a special case of this model using the 
newly developed formalism. We end the paper with Section 5, which is 
devoted to a summary of the work, along with our conclusions. 

2. TRAFFIC M O D E L  

We have stressed the generality of our approach, but for purposes of 
presentation we shall consider a specific example, namely the "traffic" 
model. This model is in fact equivalent to the single-step RSOS model in 
(1 + 1) dimensions. (8) We consider a one-dimensional chain whose sites 
may be either vacant or occupied. Define {x~} as the set of occupation 
numbers for the chain, where the subscript i denotes the position along the 
chain and x; = 0, 1. A particle at a given site has a probability to hop either 
left or right (with rate constants kL and kR) so long as the neighboring site 
in question is vacant. If the neighboring site is occupied, then no transition 
is allowed--this is the exclusion process. Defining P({xi};t) as the 
probability distribution for a given set of occupation numbers {x~} at 
time t, we have the following master equation: 

k 
O,P({xi}; t ) = 2  ~ {(1 - a)[xi_~(1 - x ; )  P({..., x i _ l -  1, x,.+ 1,..); t) 

- x (1 - P ( { x ; ) ;  t )3  

+ (1 + a)I-xi+,(1 - x ~ ) P ( {  .... x~ + 1, xi+ 1 -  1,... }; t) 

- x (1 - x i + l )  P ( { x , } ;  t ) ]  } (2 .1)  

In the above equation we have set kL = (k/2)(1 - a )  and kR = (k/2)(1 +a),  
where - 1 ~< a ~< 1. So k is a fundamental rate constant and a controls the 
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amount of bias in the system. From this equation it is possible to derive the 
(intractable) hierarchy of equations of motion for correlation functions by 
standard methods. 

3. A NEW FORMULATION OF EXCLUSION PROCESSES 

It would be preferable to have a Fokker-Planck-type description 
corresponding to (2.1). This is clearly not possible in the language of 
P({Xn}; t) due to the discrete and restricted range of the occupation num- 
bers. A technique exists which allows an exact Fokker-Planck equation to 
be derived from a master equation, so long as the stochastic variables can 
take all integer values. This technique is based upon the so-called Poisson 
transformation introduced by Gardiner and Chaturvedi. 112/ Although the 
stochastic variables in (2.1) are restricted in their allowed values, one may 
use a transformation based upon the Poisson transformation to derive an 
exact Fokker-Plank equation. 

To achieve this, we introduce at each site two Grassmann variables(~a): 
(c~;, fig). As usual, any two variables selected from {~, fl~.} anticommute; 
and the square of any given variable is zero. We define differentiation and 
integration in the usual manner: 

a = . l = 0 ,  d : . c~=l ;  f d a - l = 0 ,  fd=.==l (3.1) 

Since we shall always be dealing with the bilinear forms ~ifl~ we introduce 
for convenience the variables {y,.}: ~,.= ~,.fl;. Evidently these new variables 
mutually commute although their square is zero. Defining 3~=O~ap 
and S dy = S d7 S dfl, we have the following rules for differentiation and 
integration on {~,}: 

a,-l=O, O,.y=-I; fa .l=O, fav.v=-I (3.2) 

We now define a quasi-probability distribution f({7,.};t) via the 
transformation 

p({x;}; t)=f YI dyre-rrY~rf({7,}; t) (3.3) 
r 

For convenience we shall use f(y;  t) as an alternative notation for f ({  7,-}; t). 
We see that 

Y" P({x,-}; t )=  1 = f  1-I dYrf(Y; t) (3.4) 
{x~} �9 
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This provides the "normalization" condition for the quasi-probability 
function f(7; t). 

Before applying this transformation to (2.1) we shall discuss the 
relations between averages over P and "averages" over f defined via 

< G ( v ) ) f -  I M dvr G(y)f (y ;  t) (3.5) 
r 

One finds the following "connection formulas": 

(xi)p = (Yi)f (3.6) 

( X i X j > p =  (Yi ' / j>f; i # j  (3.7) 

and so on; if the average considered contains no monomials (of order 
higher than one) of xi, then there is a one-to-one correspondence between 
the averages over the two distributions. Averages involving higher-order 
monomials are easily handled, since xi = 0, 1 implying x 7 = x~. This means 
that 

(.. .xPi...)p = ( . . .Xi . . .>p= (.,.]2i...)f , p>~ 1 (3.8) 

This is consistent since 

(.. .7f.. .)f = 0, p >  1 (3.9) 

due to the Grassmann character of the {Ts}. 
A positive feature of (3.3) is that the transform is invertible and the 

function f is unique. To make this clear, we may represent the quasi- 
distribution function f as a sum of all possible polynomials of different 7's, 

t )=Z  a;z,..,;, I-I (3.10) 

When calculating a given moment or, in other words, a v-product on 
average, the integration in (3.3) gives a nonzero result only for one of the 
terms in (3.10), namely for the term which forms the complete set of all 7% 
on all sites when multiplied by the y-product. The corresponding coefficient 
aiz,..., i, is therefore the moment of the P-distribution, (xjl ,..., xj~,... ), so that 
the two sets of subscripts il ..... i, and j~,..., in,-.- form the complete set. 

We would like to insert (3.3) into (2.1) and manipulate the terms such 
that an equation of mot ion may be written for f (y;  t). This procedure is 
possible given the following relations [valid for arbitrary f(Y; t)]: 

f dT, e-~9'~"x,f(7; t) =~ dT, e-~"7~"(1 -Or ,  ) 7, f(7; t) (3.11) 
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and 

fclT. e-r"?~ "- 1xn f (y ;  t) 

= - f d y .  e- '"y~.(1-Or.)?.( l+6r~ (3.12) 

Given these relations, we may derive the following Fokker-Planck- 
type equation from (2.1): 

a,f(y; t)= - ~  av,A,(y) f(?; t)+ �89 ~ c3~iarjB,.j(7) f(7; t) 
i i , j  

(3.13) 

where the drift vector Ai(7) has the form 

A,(y) = --~i q- �89 + a) V,'-~ + �89 - a) y;+, + av,(L-+, - V,- ,) (3.14) 

and the diffusion matrix is given by 

ni, j (Y)  = 7i~j(c~i,j- 1 "-}- ai, j+ I) -1- Bi, i(~i,j (3.15) 

It is important to realize at this stage that the diagonal part of the diffusion 
matrix is arbitrary, since in the Fokker-Planck equation it is operated on 
by O~,0ri which is identically zero. 

One can check at this stage that equations of motion for correlation 
functions calculated from (i) the master equation and (ii) the Fokker- 
Planck equation f o r f  (with subsequent use of the connection formulas) are 
in agreement. It is worth noting that method (ii) for calculating these 
equations is far more efficient. 

We would like to go one stage further in this stochastic formulation of 
exclusion processes. Given the Fokker-Planck equation for f(7; t), it is 
natural to derive from this a stochastic differential equation (SDE) or 
Langevin equation (14) for the stochastic variable yi(t) which will depend on 
a particular realization of a set of Gaussian white noises {~,(t)}. There are 
conceptual problems involved with the notion of Brownian motion in 
superspace, but we draw the reader's attention to recent work {15) which has 
placed this subject on a sound mathematical footing. Our approach, 
however, will not draw upon any concepts of Grassmann stochastic 
variables--rather, we shall invoke the philosophy that any SDE which 
reproduces the same average quantities as the corresponding Fokker- 
Planck equation is a valid description of the physical process. This 
philosophy is clear when one realizes that there is no unique SDE corre- 
sponding to a given Fokker-Planck equation; for instance, the noise term 
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that appears in a SDE is only ever defined up to an orthogonal transforma- 
tion (14~ [see (3.16) below]. To be more specific concerning this point, we 
shall insist that averages of the form (3.9)--when calculated from the 
SDE--are zero, whereas we demand no such constraint for any given 
realization of this quantity. One of the consequences of this approach is 
that the noise appearing in the SDE will be the usual real-valued white 
noise. 

Following the usual correspondence between the Fokker-Planck 
equation and the SDE (in the Ito interpretation), we can write down the 
SDE related to (3.12) in the form 

dT~(t) =A;(7) dt + ~" g~,j(y) dWj(t) (3.16) 
J 

where g~,s is related to the diffusion matrix via 

Bi,+(7) =~ gi, k(7) gj,~(~) (3.17) 
k 

and {Ws(t)} are independent Wiener processes related to the usual 
Gaussian-distributed white noise functions via dWs(t ) = ~j dt. The existence 
of the matrix g;, j is not clear a priori, but it can be given explicitly for many 
examples. Often one may proceed to calculate quantities of interest using 
the diffusion matrix only, so that the matrix gi, j appears as a (natural) 
intermediate step. We can check if this SDE is consistent with (3.12) by 
calculating equations of motion for correlation functions from (3.16) with 
the use of the Ito formula (which tells us how to change variables in Ito 
calculus). Because of the Grassmann character of the variables, the 
derivatives appearing in the Ito formula pick up a minus sign [see (3.2)]. 
So, given a function F(7), we can determine the SDE appropriate to F by 
using the (slightly altered) Ito formula: 

dF(~) = - ~  A,(y) O, F(7) dt + �89 ~ B,,m(7).O~ OvmF(7) dt 
n tt, m 

- 2 g,,m(7) ~ r(y)  dWm(t) 
n , m  

(3.18) 

Use of (3.16) and (3.18) reproduces the equations of motion for correlation 
functions that were previously obtained from both (2.1) and (3.13). 

There is one small complication which must be addressed before we 
can use (3.16) with confidence. If F(y)=y~,  then (3.18) reduces to the 
trivial identity 0 = 0. We must be sure that calculating any moment of the 
form (3.9) by integrating (3.16) and averaging over the noise gives zero. It 
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turns out that this condition may be completely satisfied [for all moments 
of the form (3.9) and for all times,l by making a special choice for the 
diagonal part of the diffusion matrix (which up until now has been 
arbitrary). For consistency we require 

Bi, s(7) = -27sAs(7) (3.19) 

where A t is the drift vector. 
Therefore for the traffic model we have an exact SDE of the form 

(3.16) where Ai(7) is given by (3.14) and gs, j(7) is obtained from (3.17) 
with the particular form of the diffusion matrix 

B~,j(7) = 7~Tj(6s, j -  1 "~- ~)i,j+ 1 )  - -  27sAs(7) 6,.,j (3.20) 

This completes our program of deriving an exact stochastic description 
for exclusion processes. In the next section we shall present a solution of 
the SDE for the traffic model (with a = 0) as a simple illustration of the 
validity of the formalism. 

4. SOLUTION OF THE SDE FOR a = 0  

From the last section we can write down an exact SDE for the traffic 
model, with the corresponding RSOS interface being initially flat. In the 
case of a = 0 this equation has the form 

1 1 
~,= -~,;+ ~ (~,,-1 + 7,+ 1) + 2--~ E(~,i-~,-~)~,+ (~,,-~,,+,)~,+ a-I (4.1) 

As we mentioned earlier, the traffic model is intimately related to the 
single-step RSOS model [in (1 + 1) dimensions]. In the Appendix we shall 
prove that  the width of the interface W(t) for the (unbiased) RSOS model 
is related to the two-point correlation function Ca(t) of the traffic model 
(with a = 0) via 

d(W2(t)) 
d------~ = 2 - 8 c 1 ( t )  (4 .2 )  

where c , ( t ) -  (xixi+,).  
There are two ways to calculate ca. First one can find el by solving the 

hierarchy of correlation functions which may be derived from (2.1), (3.13) 
or from (4.1). Alternatively one can just integrate (4.1) and calculate cl 
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explicitly. The second method is simple and one obtains the following 
equation for c~: 

cl( t )  = �89 - I1(2t)] 

+ dt'  c ~ ( t -  t') e -2'' [ ' Io(2t ')-  2I~(2t') + Iz (2 t ' ) ]  (4.3) 

where I~ is the modified Bessel function. (~6) This is easily solved by Laplace 
transform to give 

I 1 Ca(t) = ~ -- ~ e-2t lo(2t)  (4.4) 

This result agrees with that obtained via the method of solving the 
hierarchy of correlation functions, which indicates the self-consistency of 
our formulation of exact SDEs for exclusion processes. 

Combining (4.2) and (4.4) and using the asymptotic form of the 
modified Bessel function (for large argument), (a6) we have 

(4):,, 
W(t )  = tl/4[1 + O(t-1)] (4.5) 

for large times. This is the expected result for fluctuations in an unbiased 
interface. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We have presented a new formulation of exclusion processes. The 
method is completely general and leads to descriptions of the process in the 
form of exact Fokker-Planck and Langevin equations (and also field 
theories through use of, for instance, the MSR (17) method as applied to the 
SDE.) We have demonstrated the method for the one-dimensional traffic 
model for ease of presentation. In the final section we solved this model 
(in the unbiased case) using the exact SDE, and through the mapping from 
the traffic model to the single-step RSOS model in (1 + 1) dimensions, we 
obtained the expected result of W(t). ,~ t 1/4 for an unbiased interface (or, in 
fact, for an unbiased directed polymer). 

We think that this method may be of use in the study of various 
interface growth models in (2+ 1) dimensions, where the existence of 
universality is uncertain, forcing one to consider different models in more 
detail. 
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A P P E N D I X  

In this short appendix we use the mapping from the single-step RSOS 
in (1 + 1) dimensions to the traffic model in one dimension, in order to 
relate the fluctuations of the interface in the former model to the space 
correlations in the latter--hence deriving Eq. (4.2). In Fig. 1 we show the 
simple mapping of the single-step interface onto a spin model. Transitions 
in the interface correspond to spin exchange. The traffic model is identical 
to the spin model with up/down spins corresponding to occupied/vacant 
sites. An initially flat interface corresponds to alternately occupied sites in 
the traffic model. From this mapping it is clear that 

i - - 1  

h i = h o +  ~ (2xm-1)  (A.1) 
m ~ 0  

where hi is the height of the interface in column i. Defining the mean square 
width (between sites i and j )  as 

we find that 

where 

w([i-j], t) z=  ( ( h l -  hfl2)~, (A.2) 

n - - 1  

w(n, 02=8 ~ A(n-m,t)+n(2-n) (A.3) 
m = l  

A(n, t ) =  ~ (xkx~+~)e= ~ cr(t) (A.4) 
r = l  r = l  

i 

I 

I 

I 

I 

I 

v w 

Fig. 1. The mapping from the single-step RSOS model to the traffic model. Transitions in 
the interface correspond to the (restricted) diffusion of particles in the traffic model. 
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The equations of mot ion  for two-point  correlators [which are easily 
derived from (2.1), (3.13), or  (4.1)] have the form 

and for n i> 2 

This implies that 

~,c~(t)= -c~(t)+c~(t) 

O t c . ( t ) =  - 2 c . ( t ) + c ~ _ l ( t ) + c . + ~ ( t )  

a , A ( n ,  t ) = c , + 1 ( t ) ' c , ( t )  

(A.5) 

(A.6) 

(A.7) 

So, differentiating (A.3) with respect to t and using (A.7) then gives 

= 8 [ c ~ ( t ) -  c~(t)] (A.8) 
d(w(n, 0 2) 

dt 

Finally, taking n--* 0% we have (4.2), where we have used 
coo = �88 + O ( e - 2 ' ) ]  and have defined W ( t )  = t im, ~ ~ w(n, t). 
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